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Introduction

• COVID-19, first detected in Wuhan, China, in December 2019, has caused a global
pandemic [Ayittey et al., 2020].

• Person-to-person transmission is a key factor; control measures include masks, social
distancing, quarantine, and travel restrictions [Chan et al., 2020].

• Early COVID-19 cases worldwide were imported via international travel, particularly
air traffic [Wu et al., 2020; Bogoch et al., 2020b].

• Several studies showed that air transport plays a major role in spreading infectious
diseases such as influenza, Ebola, Zika, and Dengue [Tatem et al., 2006; Brownstein
et al., 2006; Bogoch et al., 2015].

• This study investigates the hypothesis that passenger air traffic significantly
influences COVID-19 spread worldwide using robust modeling and cross-validation
techniques.
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Data

• COVID-19 case data were obtained from the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University [CSSE, 2020].

• Passenger air traffic data (number of passengers carried) were sourced from the
World Bank database [World Bank, 2018].

• The COVID-19 data cover the period from January 23, 2020, to July 13, 2020, and
include multiple countries worldwide.

• Variables:
• GC: daily count of total confirmed COVID-19 cases per country.
• PAT: total passenger air traffic in 2018 per country (most recent available data).

• Data exhibit sparse and overdispersed count characteristics typical of COVID-19 case
data.

• Preprocessing involved aligning dates and aggregating counts to ensure consistency.
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Modeling approach: count models overview

Context

To model global COVID-19 case counts (GC), we consider count data models that can
account for overdispersion and excess zeros:

• Poisson Model (PM)

• Quasi-Poisson Model (QPM)

• Negative Binomial Model (NBM)

• Zero-Inflated Models (ZIM)

Note

Hurdle models are not considered as they assume that all zeros arise from a single source
- an assumption not valid for our data.
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Modeling approach: Poisson and Quasi-Poisson regressions

Let i index the countries. We define:

• yi : Daily confirmed COVID-19 cases (GC)

• xi : Passenger air traffic (PAT) in 2018

• µi = E[yi ]: Expected number of cases

We model:
log(µi ) = α+ βxi (1)

Variance assumptions:

PM: Var(yi ) = µi

QPM: Var(yi ) = θµi , θ > 1
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Modeling approach: Negative Binomial regression

Used when data exhibit overdispersion relative to Poisson. It assumes a Poisson-Gamma
mixture:

• yi ∼ NB(µi , ρ), where µi = E[yi ] as before
• ρ: dispersion parameter

Pr(yi | xi ) =
Γ(yi + ρ)

Γ(yi + 1)Γ(ρ)

(
ρ

ρ+ µi

)ρ( µi

ρ+ µi

)yi

(2)

Variance:

Var(yi ) = µi +
µ2
i

ρ

⋆ QPM captures overdispersion by scaling variance linearly: Var(yi ) = θµi .

⋆ NBM captures overdispersion with quadratic variance: Var(yi ) = µi + µ2
i /ρ.
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Modeling approach: Zero-Inflated regressions (ZIM)

ZIM assumes two latent processes:

• A binary process generating excess zeros (modeled via logistic regression)

• A count process generating actual cases (modeled via PM or NBM)

Pr(yi | xi ) =

{
πi + (1− πi )g(yi | xi ) if yi = 0

(1− πi )g(yi | xi ) if yi > 0
(3)

Where:

• πi : probability that country i belongs to the structural zero group (i.e., always-zero
process)

• g(yi | xi ): count model (e.g., PM or NBM)
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Modeling approach: analysis workflow

Daily regression framework

We evaluate the impact of passenger air traffic (PAT) on daily confirmed cases (GC)
across 174 daily snapshots (from 23/01/2020 to 13/07/2020), for each count model.

Model selection criterion

To compare model performance, we use the Root Mean Square Error (RMSE):

RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi )2 (4)

where yi is the observed count and ŷi is the predicted count.
Lower RMSE indicates a better model fit.
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Results

Figure 1: Daily confirmed COVID-19 cases worldwide (23/01/2020 - 13/07/2020)
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Results: Zero-case period and model behavior
Key observations

• From 23/01/2020 to 09/04/2020, several countries reported zero confirmed cases,
motivating the use of zero-inflated models (ZIM).

• ZIP and ZINB models mostly failed to converge, except for ZIP between 24/03/2020
and 09/04/2020, likely due to relatively small daily sample sizes, fixed predictor
(PAT), and difficulty distinguishing structural from sampling zeros.

• As a result, ZIP and ZINB estimates were not used for further statistical
interpretation.

Robustness of other models
• PM, QPM, and NBM all showed significant associations between passenger air traffic
(PAT) and COVID-19 cases, with p-values < 0.05 for most days.

• The QPM produced insignificant results only between 22/02/2020 and 17/03/2020.

• Coefficient estimates were near zero, indicating that a one-unit increase in PAT leads
to a proportional increase in reported cases.
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Results: Variability in PAT coefficients

Figure 2: Estimated coefficients for PAT models

• Estimated coefficients remain close to zero (log-scale), meaning a one-unit increase
in PAT leads to a proportional rise in COVID-19 cases close to 1.

• Despite the small magnitude, most coefficients are statistically significant throughout
the study period.
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Results: Model performance evaluation

Forecast and model comparison

• Using training data, we estimated model parameters and produced forecasts on test
data.

• We compared models using root mean square error (RMSE).

Period Best Model(s) Period Best Model(s)

22/01/2020 – 23/01/2020 PM, QPM 03/03/2020 NBM
24/01/2020 – 28/01/2020 PM, QPM 04/03/2020 – 23/03/2020 NBM
29/01/2020 – 21/02/2020 PM, QPM 24/03/2020 – 09/04/2020 ZIP
22/02/2020 – 24/02/2020 NBM 10/04/2020 – 13/07/2020 NBM
25/02/2020 – 02/03/2020 NBM

• Early in the epidemic, simpler Poisson and QPM models performed best.

• Later, with higher variance and overdispersion, NBM provided better predictive accuracy.

• ZIP briefly performed best when there were many zeros.
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Discussion

• Our study shows higher passenger air traffic (PAT) is associated with increased
COVID-19 infections, supporting earlier evidence (Lau et al., 2020; Bogoch et al.,
2020a).

• Air travel was key to seeding outbreaks globally (Ayittey et al., 2020; Wilson and
Chen, 2020); local incidence rose as infected travelers arrived.

• In Africa, lower PAT partly explains fewer reported cases despite early concerns (Lone
and Ahmad, 2020).

• Our multi-model approach over 174 days (with cross-validation) provides robust
evidence; exception: insignificant effect during 22/02–17/03/2020, likely due to
evolving travel restrictions (WHO, 2020b).

• Limitation: daily PAT data were unavailable; future studies should use detailed time
series to better capture dynamic travel effects.
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Meta-analysis implications

• Multi-model approach with cross-validation improves robustness and helps
produce more reliable pooled estimates (Bogoch et al., 2020a; Grais et al., 2003).

• Temporal variation in air traffic effect (e.g., weaker influence during WHO
pandemic declaration) suggests meta-analyses should include dynamic moderators
such as policy changes and travel restrictions (Chinazzi et al., 2020; Kraemer et al.,
2020).

• Detailed time series data on passenger mobility could reduce heterogeneity and
enhance predictive accuracy in meta-analytic models.
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Conclusion

Key findings

• Passenger air traffic had a significant effect on COVID-19 spread during the early
pandemic.

• Count data models provided robust evidence of this relationship.

• Results complement meta-analytical evidence that human mobility drives epidemic
spread.

Perspective

• Now that the pandemic has ended, meta-analyses can combine early and later data
to assess whether these effects persisted across waves and policy changes.
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